Application Deadline

March 09, 2018


Andre Gesquiere
Sudipta Seal


REU 2018 Flyer

Research Projects

Available projects are summarized below. REU students will be in a highly collaborative environment and learn aspects of material science engineering, bioengineering, biophotonics, biochemistry, and clinical translation.

Mechanisms of protein biopolymer self-assembly and mechanics

REU students will participate in a research project that focuses on understanding how protein biopolymer mechanics are modulated by environmental factors in vitro. Students will gain trainings on molecular biochemistry and biophysics tools including protein purification, fluorescence microscopy imaging as well as quantitative imaging analysis techniques. After completion of this research project, students will gain a good overview of concepts and techniques in nano-biophysics.

Micro/Nanoelectrodes and Sensors for Cell-based Biosensing Applications

The REU students will participate in cell-based biosensors development and characterization. The student will work on the design (utilizing AutoCAD or Solidworks) of 2D and 3D device geometries and fabricate the micro/nanoelectrodes and other sensors such as strain sensors, flow sensors etc., utilizing makerspace micro/nanofabrication techniques such as laser micromachining, CNC micromilling, lamination, 3D printing, electroplating etc. These devices will further be characterized utilizing electrical, electrochemical and biological methods such as impedance spectroscopy, cyclic voltammetry and electrophysiology. The student will additionally learn cell culture techniques for bioplotting of “on demand” electrically active cells such as neurons, muscle cells and cardiomyocytes. They will plate, grow and optically and electrically validate the devices using these “on demand” cell models.

Nanoparticle based expansion of natural killer cells for adoptive cellular cancer therapy

Students will participate in immunology and tumor biology research. Students will work on devising methods to chemically conjugate various agents (cytokines, chemokines, antibodies, fluorophores, small molecule pharmacological compounds) on plasma membrane particles (PM-particle) surface or to use extrusion methods to repackage agents inside the PM-particle. These modified forms will be characterized using physical (e.g. DLS, zeta potential) and biochemical (e.g. assays) methods and tested in culture for Natural killer (NK) cell activation efficacy. Results from cell culture will be analyzed by flow cytometry. Students will learn cell culture methods that are necessary for testing the efficacy of the NK stimulating particles.

Analyzing the reactivity of cerium oxide nanoparticles with reactive nitrogen species

REU students will be involved in the synthesis and characterization (HRTEM, XPS, etc.) of Ceria nanoparticles (CeNPs). Students will test the ability of CeNPs to react with reactive nitrogen species, specifically reactions with the radical nitric oxide (NO) and with the oxidant peroxynitrite (ONOO-). The students will calculate the rates of reaction with either reactive nitrogen species (RNS) and determine the rate constants with these substrates through several coupled biochemical assays.

Hydrogel Nanofibers with Nanoparticles for Tissue Engineering

Students will fabricate hydrogel fibers with Ceria nanoparticles (CeNPs) and hydroxyapatite nanoparticles (HANPs). Students will perform antioxidant studies to evaluate the resistance of cells grown on CeNP hydrogel fibers against oxidative damage by H2O2 and quantify cell viability. Students will also investigate attachment and growth of bone sarcoma cells on HANP hydrogel fibers. The cells’ spreading, mineralizing of matrix, and formation of bone nodules will be studied. Students will learn to fabricate hydrogel fibers with CeNPs and HANPs, cell culture, and qualitative and quantitative data collection from cell culture through optical microscopy and assays.

Non-Heavy Metal Containing Quantum Dot (Qdot) Probes for Detection of Glutathione in Biological Samples

The REU students working on this project are expected to synthesize and characterize dopamine conjugated ZnS:Mn/ZnS Qdots, and perform preliminary efficacy testing in DI water, cell media and cell lysate containing Glutathione (GSH). The students will learn quantitative application of absorption and fluorescence spectroscopy. REU students will evaluate the performance of the Qdot-DOP probe for quantification of GSH concentration in GSH contaminated phosphate buffered saline (PBS, pH 7.4), cell media, and cell lysate from a cancer cell lines.

Engineered biocompatible flexible wearable smart wound healing patch

Students will learn to apply electrospinning to perform near field coaxial electrospinning (NFCE). They will optimize parameters such as viscosity of polymers, gauge of inner and outer needles, voltage applied and distance between the needle and collector to successfully form coaxial fibers. Students will work with 3D printing techniques integrated with NFCE to align SF-PVDF-CeNP nanofibers. Students will characterize the SF-PVDF-CeNP nanofibers using X-ray diffraction, X-ray photoelectron spectroscopy, Uv-visible spectroscopy, and additionally test the preservation of antioxidant properties of CeNPs using assays. Furthermore, students will test SF-PVDF-CeNP nanofibers in vitro and investigate efficiency in supporting endothelial cell functions, and examine their angiogenic stimuli.

Tunable plasmonic structures for biological sensing

REU students will learn how to develop plasmonic substrates using nanoimprinting techniques. Students will work on tuning plasmon resonances by changing the size, geometry, and pitch of nanostructured substrates. Students will be trained in UV-vis absorption spectroscopy and Raman spectroscopy to study sensing properties of the plasmonic substrates. In addition, they will get hands-on experience with Atomic Force Microscopy and Scanning Electron Microscopy.

Computer Science in image analysis of 3D neuroimaging of Purkinje fibers in mouse cerebellar cortex: Consequences of selective adrenergic cell ablation

The students will learn how to collect, analyze and process fluorescently-labelled brain images using advanced imaging and computing techniques to create 3D renderings for quantitative analysis of a specific group of neurons in the cerebellar cortex. REU students will work on in vitro aspect of the project.

Soft conducting polymer nanoparticles for efficient photoactivated cancer treatment

REU students working on this project will learn to fabricate conducting polymers nanoparticles (CP-NPs) by the reprecipitation method and will learn to attach ligands. Students will learn cell culture, and qualitative and quantitative evaluation of results by cell staining, 3D confocal microscopy, flow cytometry, and MTS viability assays.